BARKER 2000

QUESTION 1. [12 marks]

(a) If the surface area of a sphere is given by $A = 4\pi r^2$, find the radius (correct to 2 decimal places) if the surface area is 500 cm².

[2m]

(b) Find the value of e^2 correct to 3 significant figures.

(2m)

(c) Rationalise the denominator of $\frac{2}{\sqrt{2}-1}$

[2m]

(d) Factorise fully $3 - 12x^2$

[2m]

(e) Splve x(x-4) = 3

[2m]

f) If $\sin \theta = \frac{2}{\sqrt{5}}$, evaluate $\tan \theta$ for $90^{\circ} < \theta < 180^{\circ}$

[2m]

(166)

QUESTION 2. [START A NEW PAGE] [12 marks]

DIAGRAM NOT DRAWN TO SCALE

Given AB \parallel CD, \angle BCE = 40° and BC = EC, find the size of \angle ECD, giving reasons.

[3m]

(b) Draw a neat sketch showing the points A(3, -1), B(7, 2) and C(1, 10) on a number plane.

(i) Find the gradients of BC and of AB.

[2m]

(ii) State why ABC is a right-angled triangle.

[1m]

 $\{2m\}$

[2m]

(iii) Find the area of ΔABC.

(v) Find the equation of the circle which passes through the points A, B and C with centre M.

(iv) Find M, the midpoint of AC. Show that the equation of the line passing through M and parallel to the line AB is 3x - 4y + 12 = 0.

[2m]

QUESTION 3. [START A NEW PAGE] [12 marks]

(a) Differentiate the following functions:

(i)
$$y = (4x + 3)^2$$

[2m]

(ii)
$$y = xe^4$$

[2m]

(b) Find the exact value of
$$\int_0^2 e^{3x} dx$$

[2m]

(c) (i) Sketch the graph of
$$y = |x - 2|$$
, showing all the main features.

[1m]

(ii) State the domain and range of
$$y = |x - 2|$$

[1m]

(d) If
$$f(x) = \begin{cases} x^2 - 1 & \text{for } x > 1 \\ x & \text{for } x \le 1 \end{cases}$$

find the value of f(-2) + f(1) + f(3)

[2m]

(e) Evaluate
$$\lim_{x\to 0} \frac{2x}{x^2 + x^2}$$

[2m]

QUESTION 4. [START A NEW PAGE] [12 marks]

(a)

On a golf course, the distance from a tee, T, to the hole H is 250 metres.

A golfer's ball comes to rest at point B, 180 metres from T.

Angle HTB is 15°, as shown in the diagram.

How far is B from H?

[3m]

- (b) A supermarket displays cans of fruit in the form of a "pyramid".
 There are 3 cans in the top row, 5 in the next row, 7 in the next row and so on.
 If there are 20 rows on display, find:
 - (i) the number of cans in the bottom row;
 - (ii) the total number of cans in the display.

[4m]

(c)

The diagram shows the graph of the function $y = 2x - x^2$.

- (i) Find the x coordinate of the point B where the curve crosses the positive x-axis.
- (ii) Find the area of the shaded region contained by the curve $y = 2x x^2$ and the x-axis.
- (iii) Frite down a pair of inequalities that specify the shaded region.

QUESTION 5. [START A NEW PAGE] [12 marks]

- (a) Consider the curve given by $f(x) = x^3 12x$
 - (i) Find f'(x)
 - (ii) Find the coordinates of the stationary points and determine their nature.
 - (iii) Find any points of inflexion.
 - (iv) Draw a neat sketch of the curve.
 - v) Show that f(x) is odd.

[7m]

(b) Given $\log_a 6 = 1.792$ and $\log_a 2 = 0.693$, evaluate $\log_a 24$

[2m]

(c) Katrina's chance of obtaining a ticket to the Olympic Swimming Finals is 28%, but she has a 52% chance of obtaining a ticket to the Olympic Badminton Finals.

Using a tree diagram (or otherwise), find the probability that she obtains:

- (i) both Final tickets;
- (ii) only one of the Finals Tickets.

[3m]

- (a) For the parabola $x^2 = 8(3 y)$:
 - (i) Find the coordinates of the vertex.
 - (ii) Sketch this parabola on a number plane showing the vertex, focus and the equation of the directrix.
 - (iii) For what values of x is this parabola always positive?

[6n

- (b) Find the value of k for which the equation $3x^2 + 10x + k = 0$ has:
 - (i) one root which is the reciprocal of the other;
 - (ii) equal roots.

[3m]

(c)

DIAGRAM IS NOT TO SCALE

Given the diagram:

- (i) Prove that ΔQST is similar to ΔQRP.
- Hence find the length of PR.

[3m]

(a)

The bowl of a wine glass is formed by rotating the arc of the curve $y = x^2 + 2$ between (0, 2) and (2, 6) about the y-axis.

Find the volume of the bowl of the glass so formed.

(3m)

(b)

The diagram above represents a cross-section through a river, with the depth of the river marked every 10 metres as shown.

(i) COPY and COMPLETE this table in your paper.

x	0	10	20	30	40
f(x)					

- (ii) Use Simpson's Rule with 5 function values to estimate the area of the cross-section.
- (iii) If the river is flowing at the rate of 2 m per second, what volume of water passes through this cross-section each minute?

[5m]

Find the equation of the curve y = f(x), given that $\frac{d^2y}{dx^2} = 2x + 1$ and that there is a stationary point at (1, -2).

[4m]

QUESTION 8. [START A NEW PAGE] [12 marks]

(a) A plant is observed over a period of time. Its initial height is 30 cm. It grows 5 cm during the first week of observation. In each succeeding week the growth, in height, is 80% of the previous week's growth.

Assuming this pattern continues, calculate the plant's ultimate height.

[3m]

(b) Solve
$$4^x - 2(2^x) - 8 = 0$$
 for x

[4m]

Consider the graph of the derivative $\frac{dy}{dx}$ given below.

- (i) Comment on the sign of $\frac{dy}{dx}$ for all x except x = 1. What does this imply about the curve y = f(x) for all x, except x = 1?
- (ii) What can you conclude about y = f(x) when x = 1?
- (iii) Sketch $\frac{d^2y}{dx^2}$
- (iv) Sketch a possible graph of y = f(x).

[5m]

QUESTION 9. [START A NEW PAGE]

[12 marks]

- Find the derivative of $y = e^{x^2}$
 - Hence, evaluate $\int_{0}^{2} x e^{x^{2}} dx$

[2m]

(b)
$$\int \frac{2x \ dx}{2 - 5x}$$

[2m]

(c)

Given this diagram and using the fact that area ABED < area ACED < area ACFD show that $\frac{x}{x+1} < \ln(x+1) < x$

(d)

A cylinder of radius (r) and height (h) fits exactly inside a sphere of radius (R).

If the sphere has a radius of 12 cm:

show that the volume of the cylinder can be written as

$$V = \pi \left(144h - \frac{h^3}{4} \right)$$

determine the exact value of the height (h) of the cylinder for it to be a maximum volume.

(5m)

QUESTION 10. [START A NEW PAGE] [12 marks]

- Mr and Mrs Lee wish to buy a home unit in Homsby. They obtained a loan of \$120 000 from a bank which they agreed to repay by equal monthly repayments. We assume that compound interest is calculated at a fixed rate of 7.2% p.a.
 - If the monthly repayment is \$M, then show A, = $(120000 \times 1.006 M)$ is the amount owing at the end of one month and hence write an expression for A2, the amount owing at the end of two months.
 - Write an expression for A_n , the amount owing after n months.
 - If the \$120 000 loan (including interest charges) is exactly repaid at the end of 25 years, write an expression for the monthly repayment, \$M.
 - Calculate the monthly repayment.

[4m]

- The curve $y = \frac{1}{2}(e^x + e^{-x})$ is called a catenary.
 - Draw a neat sketch of the catenary for $-2 \le x \le 2$.
 - Hence, find the volume of the solid of revolution by rotating around the x-axis the region under the curve in (i) and above the x-axis and between x = -2 and x = 2.

[4m]

A drinking glass has the shape of a truncated cone.

- If the internal radii of the base and the top are 3 cm and 4 cm respectively and the height is 8 cm, calculate the capacity of the glass.
- If the glass is filled with water to a depth of 4 cm, find the volume of the water.

[4m]

MAR 12 20 TRIAL. 2000

(a)
$$\frac{2}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$$

$$= 2\sqrt{2+2}$$

$$= 2\sqrt{2} + 2$$
.

$$d_1 = 3(1-4x^2)$$
= $3(1-2x)(1+2x)$

e)
$$x^{2}-4x-5=0$$

$$(x-5)(x+1)=0$$

:
$$\tan \theta = -\frac{1}{2} = -2$$
.

) ABEC is isos. (given) (Q4.a)

6) i) BC:
$$m_i = \frac{2-10}{7-1} = -\frac{4}{3}$$

$$ii_1 \quad m_1 \times m_2 = -1.$$

$$A = \frac{1}{2} \times 10 \times 5 \qquad 62 \quad \text{iv)} M = (2, 41/2) M_{46} = \frac{3}{4}$$

i)
$$y' = 2(4x+3)x4$$

* 8(4x+3).

$$= e^{4x} (4x+i).$$
b) $I = \frac{1}{3} \left[e^{3x} \right]^2$

$$=\frac{1}{3}(e^{-}e^{-})$$

$$=\frac{1}{3}(e^{6}-1)$$
.

d)
$$-2+1+(3^2-1)$$

$$= \lim_{x\to 0} \frac{2}{x+1}$$

$$\int a^2 = b^2 + c^2 - 2bc \cos A$$

Q4. b) ii)
$$S_{20} = \frac{20}{2} (3 + 41)$$

= 440.

c) i)
$$y = 2x - x^{1}$$

$$y = x(2-x)$$
.

ii)
$$A = \int_0^2 (2x - x^2) dx$$

$$= \left[2c^2 - \frac{3c^3}{3}\right]_0^2.$$

$$=\left(4-\frac{9}{3}\right)-0$$

$$Q5. a) f(x) = x^3 - 12x$$

i)
$$f'(x) = 3x^2 - 12$$

ii) let
$$f'(x)=0$$

$$3x^{2} - 12 = 0$$

when
$$x=2$$
, $f(x)=-16$. (2,-11

when
$$x=-2$$
 $\int_{-2}^{\infty} (-2) = -12$... maxin

$$iii) f''(x) = 6x$$

- -> dia-64-+ 0125 = 555 54y-18 = 32-6
- radius = 5,25, center - 3x-4+12=0

$$(35. a) iv) y
inflexion
$$(4i)$$

$$x$$$$

since
$$f(-x) = -f(x)$$

 $f(x)$ is odd.

= 3.178

ii)
$$P(S\overline{B}) + P(B\overline{S})$$

$$x^2 = -8(y-3)$$

$$(x-h) = -4a(y-k)$$

i) vertex (0,3)

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

-216 <x <256.

for
$$3x^2+10x+k=0$$

$$d\cdot \frac{1}{d}=\frac{k}{3}$$

$$1=\frac{k}{3}$$

$$h_1 = 0$$
 $b^2 - 4ac = 100 - 12k = 0$
 $k = 100 = 12$

$$\therefore k = \frac{25}{3}.$$

c) i)
$$\frac{QS}{QR} = \frac{QT}{QP}$$

$$\frac{8}{12} = \frac{10}{15}$$

$$\frac{2}{2} = \frac{2}{2}$$

$$\frac{2}{3} = \frac{2}{3} .$$

$$\angle SQT = \angle PQR$$

$$\frac{ST}{PR} = \frac{2}{3}$$

$$\frac{14}{PR} = \frac{2}{3}$$

Q7. a)
$$V = \pi \int_{0}^{1} xc^{2} \cdot dy$$

$$= \pi \int_{0}^{1} y^{-2} \cdot dy$$

$$= \pi \left[\frac{y^{2}}{2} - 2y \right]_{0}^{1}$$

b)i)
$$x = 0$$
 10 20 30 40
 $f(x) = 0$ 6 5 9 0
ii) $A = \frac{h}{3} \left(0 + 0 + 4(6+9) + 2x5\right)$
 $= 233 \frac{h}{3} \text{ m}^{2} \text{ (h=10)}$

iii)
$$V = A \times H$$
 $= 233 \frac{1}{3} \times 120$ $= 120 \text{ m/se}$
= 28000 m³

c)
$$\frac{dy}{dx} = x^2 + x + c$$
.
when $x = 1$, $\frac{dy}{dx} = 0$.
 $\therefore 1^2 + 1 + c = 0 \implies c = -2$

$$\frac{dy}{dx} = x^{2} + x - 2.$$

$$y = \frac{x^{3}}{3} + \frac{x^{2}}{2} - 2x + k$$
when $x = 1$, $y = -2$.

$$\therefore -2 = \frac{1}{3} + \frac{1}{2} - 2 + k$$

$$\therefore k = -5/6$$

$$y = \frac{x^3}{3} + \frac{x^2}{2} - 2x - \frac{5}{6}$$

$$Q8. a) a=5, r=0.8$$

 $S_{\infty} = \frac{9}{1-r} = \frac{5}{1-0.8} = 25.$

.. Ult. height =
$$30+25 = 55c$$

b) $4^{x}-2(2^{x})-8=0$.

let
$$m = 2^{2}$$

 $m^{2} - 2m - 8 = 0$
 $(m-4)(m+2) = 0$
-'. $m = 4, -2$

$$2^{x} = 4$$
 or $2^{x} = -2$.

>0 for all X #1. The has positive except when X=1 a stationary en yellal as and if *<1, dy>0 >1, dy >0.

horizontal point Inflexion at x=1.

1. a) i)
$$y' = 2xe^{x^2}$$

$$T = \frac{1}{2} \left[e^{x^2} \right]_0^2$$

$$=\frac{1}{2}(e^4-e^9)$$

$$= \frac{1}{2}(e^4-1).$$

$$I = -\frac{2}{10} \left(\frac{-10x}{2-5x^2} . dx \right)$$

=
$$-\frac{1}{5}$$
 ln $(2-5)^{2}$ + c.

Area ABED =
$$\left[(x+1)-1 \right]^{\gamma} \frac{1}{x+1}$$

$$=\frac{\infty}{\infty+1}$$

=
$$\ln(x+1) - \ln$$

= $\ln(x+1)$.

Area ACFD =
$$[(x+1)-1] \times \frac{1}{1}$$

= x .

$$\therefore \frac{x}{x+i} < \ln(x+i) < x.$$

$$r^2 = 12^2 - \left(\frac{h}{2}\right)^2$$

i)
$$V = \pi r^2 h$$

= $\pi \left(144 - \frac{h^2}{4} \right) h$

$$= \pi \left(144h - \frac{h^3}{4} \right).$$

$$\frac{11}{dh} = T\left(144 - \frac{3h^2}{4}\right)$$

$$\frac{3h^2}{4} = 144$$

$$h^2 = 192$$
 $h = \pm \sqrt{192}$

ht h is height : h= + 192

h	lo	1192	20
dv dv	+69	0	-15%
	+	0	_

· maximum volume :. h= 8/3 cm.

Q10. a) i) 0.6% month.

iv)
$$M = $863.51$$
b) i)
$$y = \frac{1}{2}e^{x}$$

$$y = \frac{1}{2}e^{x}$$

ii)
$$V = \pi \int_{-2}^{2} \left[\frac{1}{2} \left(e^{x} + e^{-x} \right) \right]^{2} dx$$

= $\frac{2\pi}{4} \int_{0}^{2} \left(e^{x} + 2 + e^{-x} \right) .$

$$= \frac{\pi}{2} \left[\frac{e^{2x}}{2} + 2x - \frac{e^{-2x}}{2} \right]^{2}$$

$$= \frac{\pi}{2} \left[\frac{e^{4}}{2} + 4 - \frac{e^{-4}}{2} \right] - \left(\frac{e^{6}}{2} + 0 - \frac{e^{6}}{2} \right)$$

$$=\frac{\pi}{4}(e^4+8-e^{-4})$$
 units³.

) i)
$$\frac{4}{8}$$
 Similar $\Delta \hat{s}$

$$\frac{x}{x+\hat{s}} = \frac{3}{4}$$

$$4x = .3x + 24$$

$$\therefore x = 24$$

Vol = vol. of big cone - vol. small (= 17.4.32 - 17.3.24

$$= 98^{2/3} \text{ Tr cm}^{3}.$$

OR $(4,8)$ $m = \frac{8-0}{4-3} = 8.$

(3,0) $x = \frac{8}{4-3} = 8.$

(3,0) $x = \frac{8}{4-3} = 8.$
 $x = \frac{8}{4-3} = 8.$
 $x = \frac{8}{4-3} = 8.$
 $x = \frac{8}{4-3} = \frac{8}{4-3} = \frac{8}{4-3}$
 $x = \frac{8}{4-3} =$

:
$$y = 8x - 24 = 7 = -24$$
.
if $y = 8x - 24 = 7 = 3 = 3 = 3$
 $y = 77 = 3 = 3 = 3$
 $y = 77 = 3 = 3 = 3$

$$V = \frac{11}{11}$$
 $\times . dy = \frac{11}{11}$ $= 98^{2/3} \text{ Tr} \text{ Using the second of } V_{2} \text{ Tr} \text{ Using the second of } V_{3} \text{ Tr} \text{ Using the$

ii)
$$V_{z} = \frac{127}{3} \text{ Tr cm}^{3}$$
.